The evolution of non-reproductive workers in insect colonies with haplodiploid genetics
نویسندگان
چکیده
Eusociality is a distinct form of biological organization. A key characteristic of advanced eusociality is the presence of non-reproductive workers. Why evolution should produce organisms that sacrifice their own reproductive potential in order to aid others is an important question in evolutionary biology. Here, we provide a detailed analysis of the selective forces that determine the emergence and stability of non-reproductive workers. We study the effects, in situations where the queen of the colony has mated once or several times, of recessive and dominant sterility alleles acting in her offspring. Contrary to widespread belief based on heuristic arguments of genetic relatedness, non-reproductive workers can easily evolve in polyandrous species. The crucial quantity is the functional relationship between a colony's reproductive rate and the fraction of non-reproductive workers present in that colony. We derive precise conditions for natural selection to favor the evolution of non-reproductive workers.
منابع مشابه
The role of male disease susceptibility in the evolution of haplodiploid insect societies.
Heterozygosity at loci affecting resistance against parasites can benefit host fitness. We predict that, in haplodiploid species, haploid males will suffer decreased parasite resistance relative to diploid females. We suggest that elevated susceptibility in haploid males has shaped the evolution of social behaviour in haplodiploid species. Male susceptibility will select for behavioural adaptat...
متن کاملComparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies.
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we develope...
متن کاملReproductive specialization in multiple-queen colonies of the ant Formica exsecta
In polygynous (multiple queens per nest) colonies of social insects, queens can increase their reproductive share by laying more eggs or by increasing the proportion of eggs that develop into reproductive individuals instead of workers. We used polymorphic microsatellite loci to determine the genetically effective contribution of queens to the production of gynes (new queens), males, and 2 diff...
متن کاملThe evolution of queen control over worker reproduction in the social Hymenoptera
A trademark of eusocial insect species is reproductive division of labor, in which workers forego their own reproduction while the queen produces almost all offspring. The presence of the queen is key for maintaining social harmony, but the specific role of the queen in the evolution of eusociality remains unclear. A long-discussed scenario is that a queen either behaviorally or chemically ster...
متن کاملSocial life: the paradox of multiple-queen colonies.
The evolution of animal societies in which some individuals forego their own reproductive opportunities to help others to reproduce poses an evolutionary paradox that can be traced to Darwin. Altruism may evolve through kin selection when the donor and recipient of altruistic acts are related to each other, as generally is the case in social birds and mammals. Similarly, social insect workers a...
متن کامل